Герб города Благовещенска Амурской обл.

Амурский клуб эндогенного дыхания «ЭНДОГЕНИК АМУРА» 
Лотос ОМ Доставит в дом «Феномен Фролова»! Чтобы вся твоя семья Всегда была здорова! Дыши правильно - живи хорошо! Здоровья Вам, счастья и благополучия!
  Главная
  История
  Статья Дмитрука
  История клуба Финал - создание
  Исторический экскурс
  Роковая ошибка
  Трудный путь
  Заявление В.Ф. Фролова
  Уведомление патентодержателей
  Теория
  Пресса
  Партнеры
  Клуб
  Форум
  Гостевая книга

Поиск

Краткий исторический экскурс

Роковая ошибка медицины - Отрывок из книги В.Ф.Фролова «Войдите в столетие молодыми»

История медицины умалчивает, кто является автором трактовки процесса дыхания человека. Знатоки приписывают авторство П.Лапласу, проводившему исследования совместно с А.Лавуазье. Роковая ошибка произошла ещё в XIX веке и её, безусловно, нужно исправлять. Хотя интересно представить развитие медицины, если бы истина, хоть и с опозданием, возобладала. Тем не менее, к безвинным жертвам этой ошибки можно отнести сегодня более 2 млрд. человек. Ежегодно к этим жертвам присоединяется более 50 млн. человек, но положение с каждым годом ухудшается.

Ошибка прошлого, казалось бы, вскрыта. Сначала это сделал Г.Н. Петракович (1989 - 1992 г.г.). Затем, благодаря технологии эндогенного дыхания, гипотеза Г.Н.Петраковича подтверждается колоссальным количеством фактического материала по лечению различных заболеваний и освоению эндогенного дыхания. В 1997 - 2001г.г. издано более 100 тыс. экземпляров моих книг, где были изложены, принципиально отличные от традиционных, взгляды на сущность дыхания. Но официальная наука не спешит вносить корректировки.

Между тем, срочной переработки требуют научные и учебные издания по физиологии и другим вопросам, относящимся к дыханию, кровообращению, обмену, энергетике. Соответственно, требуют пересмотра различные системы жизнеобеспечения и приборы, используемые в операционной практике, реанимации, в военной авиации, космических станциях и других системах жизнеобеспечения. Без понимания реального механизма дыхания невозможна успешная разработка искусственного сердца, кровезаменителей. Появились новые требования по оборудованию жилища, в том числе - с целью обеспечения здоровья новорождённых, детей, людей с ослабленным здоровьем и т.д.

В современной физиологии дыхания и кровообращения имеется множество "тёмных пятен", которые не могут объяснить специалисты. Но непонятные феномены приобретают ясность и понимание, как только начинает применяться методология теории эндогенного дыхания. Старая методология оказалась неспособной разобраться с фактами, явлениями реального организма. Сегодня они представлены задачами, решение которых отложено на будущее. Новая методология легко решает эти задачи, поскольку она формировалась на базе реального организма.Уже это обстоятельство обуславливает очевидную научную приоритетность новой теории дыхания перед традиционными представлениями.

Не ограничиваясь этим, приведём доказательства принципиальных ошибок в трактовке главного вопроса дыхания и кровообращения: обеспечение организма кислородом. Статус проблемы самый высокий: рассматривается главный вопрос жизнеобеспечения организма. Сегодня появилась новая эндогенная медицина с новой трактовкой вопроса жизнеобеспечения организма. Но основная масса людей обслуживается старой, доэндогенной медициной. Рассмотрим, насколько соответствует теоретическая база этой (старой) медицины реальному организму.

Проследим, как осуществляется передача кислорода воздуха из лёгочных альвеол в капилляры, а затем далее через кровеносные сосуды тканям. Для иллюстрации воспользуемся известной всем специалистам кривой диссоциации оксигемоглобина. Мы назвали её "кривой диссоциации - оксигенации оксигемоглобина", поскольку процессы, ею отражаемые, по мнению некоторых учёных, обратимы.

Нам было интересно выяснить, насколько реально соответствие этой кривой процессам, происходящим в организме. Кривая диссоциации впервые была получена Дж. Баркрофтом в лабораторных условиях. Снять эту кривую в реальных условиях хотя бы в экспериментах на лабораторных животных пока никто не сумел. Для разрешения нашего принципиального вопроса интерес в первую очередь представляет кривая оксигенации, которая отражает процесс передачи кислорода воздуха из альвеол (абсцисса) эритроцитам крови (ордината). Согласно традиционным представлениям, у молодого здорового человека напряжение (парциальное давление) кислорода в альвеолярном воздухе рО2 составляет 100 мм рт.ст. При этом насыщение оксигемоглобина крови SО2 97 % или 95 мм рт.ст. Всё это представляется как должное, гипотетическое. Что же реально? Оказывается, никто, никогда кривую оксигенации гемоглобина реальной крови не получал, потому что её получить принципиально невозможно! Имеются лишь предположения, недоказанные гипотезы и данные отдельных опытов, проводимых в условиях, далёких от реальных. Известные в этой связи исследования Мошизуки, Вейбеля, Грабе, Тевса и других учёных лишь порождают массу новых вопросов.

Кислород воздуха никогда не попадает в эритроциты крови, которая протекает по лёгочным капиллярам. Эритроцит находится в капилляре около 0,3 секунды и трудно объяснить, как за это время кислород должен преодолеть достаточно плотную сурфактантную плёнку, прочную сосудистую стенку, слой плазмы и очень прочную эластичную четырёхслойную мембрану эритроцита.

Доказательств быстрого транспорта кислорода через эти реальные преграды физиология не имеет. Но это даже можно не обсуждать. Между гемоглобином, находящимся внутри эритроцита, и кислородом, находящимся в альвеоле, имеется непроходимый барьер. И эритроцит снаружи, и стенка капилляра изнутри покрыты слоями гидратированной воды, составляющей, в лучшем случае, суммарно 0,2 - 0,3 мкм. Чтобы достичь поверхности эритроцита, молекула кислорода должна преодолеть слой 1000 - 2000 молекул воды. Концентрация растворённого в плазме крови кислорода даже при рО2 100 мм рт.ст. не превышает 0,003 мл/мл, т.е. кислорода в крови намного менее 1 %. Поскольку содержание кислорода в эритроците намного выше, эритроцит в лёгочном капилляре не может получить даже одну молекулу кислорода.

Изложенные аргументы для некоторых специалистов, возможно, недостаточно убедительны. Но это лишь прелюдия к основному доказательству. Необходимо было показать проблему изнутри. Авторам физиологии дыхательной функции крови явно не хватало понимания физики процесса и, прежде всего, элементарных знаний о растворении и диффузии газов в жидкости. И можно только сожалеть, что явная ошибка оказалась незамеченной для учёных и практиков нескольких поколений.

Между тем, реальное видение вопроса может быть доступным для многих людей, имеющих техническое и гуманитарное образование. Снова представим эритроцит - дискоцит, находящийся в капилляре.

Вариант первый, наиболее вероятный: эритроцит движется внутри капилляра соосно. С обеих сторон диска и по всей боковой круговой поверхности эритроцит окружён плазмой. Толщина слоёв плазмы с обеих сторон десятки микрон, а вокруг круговой боковой поверхности не менее 0,7 мкм. Может ли кислород поступить в эритроцит? Ведь каждая молекула кислорода на пути к поверхности эритроцита должна преодолеть слой более 4000 молекул воды. Парциальное давление кислорода над наружной стенкой капилляра, как уже было сказано, 100 мм рт.ст. Если принять реально версию традиционной науки о почти мгновенном преодолении кислородом капиллярной стенки, такое же давление должно быть и на внутренней стенке.

Далее, чтобы достичь эритроцита, кислород должен раствориться в плазме и посредством диффузии достичь его поверхности. Но растворимость кислорода в плазме чрезвычайно мала. При рО2 100 мм рт.ст. в одном кубическом сантиметре плазмы растворяется всего лишь 0,003 куб.см. кислорода, т.е. на 300000 молекул воды приходится 1 молекула кислорода.

Концентрация кислорода в массовых процентах не превышает 0,00043. Даже если кислород приникнет через стенку капилляра, дальнейшая его диффузия к эритроциту ввиду ничтожно малой растворимости невозможна. Также невозможна диффузия кислорода из крайне обеднённой кислородом плазмы крови в эритроцит, где концентрация собственного кислорода в тысячи раз выше.

Представьте, что всё происходит согласно выше означенной традиционной, ортодоксальной наукой (но не доказанной) версии. Кислород за сотые доли секунды из альвеол проникает в капилляр, мгновенно насыщая плазму до предела его растворимости (физики априори будут утверждать, что это невозможно). Поступление кислорода в капилляр прекращается. Эритроцит, пройдя лёгочный капилляр, не получает при этом ни одной молекулы кислорода.

Вариант второй, менее вероятный: эритроцит при движении внутри капилляра периодически всё же касается стенок собственной круговой поверхностью диска. Хотя трудно представить, как огромное количество кислорода может перескочить с сосудистой стенки на поверхность эритроцита, когда площадь соприкосновения и время касания ничтожно малы. Но об этом не стоит размышлять. В данном варианте непреодолимым барьером для кислорода также является вода плазмы. Экспериментально доказано, что поверхность эритроцита и стенки капилляра покрыты гидратированным слоем воды. Толщина такого слоя составляет десятые доли микронов. Минимальный слой воды между эритроцитом и сосудистой стенкой составляет около 0,5 мкм. Таким образом, молекула кислорода на пути от внутренней стенки капилляра до поверхности эритроцита должна преодолеть слой толщиной более 3000 молекул воды!

Из обсуждения следует, что передача кислорода из альвеол в эритроциты принципиально невозможна. Непреодолимым барьером между стенкой лёгочного капилляра и эритроцитом является слой плазмы, растворимость кислорода, в которой ничтожно мала. Пропагандируемая вот уже десятилетия "кривая диссоциации - оксигенации оксигемоглобина" вовсе не является отображением реальных процессов, происходящих в организме. Если попытаться отразить реальный процесс обмена между альвеолярным воздухом и эритроцитом, то, принимая во внимание фактически нулевую концентрацию кислорода в плазме, на этой "кривой" можно поставить только точку в нулевой отметке.

А что же реально происходит в лёгочном капилляре? В нём происходят процессы энерговозбуждения эритроцитов, о которых было рассказано ранее. Эритроциту не требуется прикасаться к стенке капилляра. Стенку капилляра и эритроцит соединяет внедряемый в сосуд, покрытый сурфактантом воздушный пузырёк. Такое соединение мгновенно заканчивается вспышкой сурфактанта и энерговозбуждением эритроцита, который немедленно начинает наращивать свой энергетический потенциал.

Мы должны сделать небольшое пояснение, чтобы дальнейший материал стал понятен читателю. В физиологии количество кислорода в крови и тканях чаще всего измеряют напряжением кислорода рО2 в мм рт.ст. Напряжение кислорода в крови определяется его измерением в сосудистой стенке. Для этого в ткань сосуда вводятся предварительно прокалиброванные платиновые микроэлектроды, по электродным потенциалам которых определяется напряжение кислорода. Измеренное внутри поверхностного слоя интимы сосуда напряжение кислорода приписывается крови, проходящей через зону измерения. Сегодня мы знаем, что никакого напряжения кислорода в крови нет. Концентрация кислорода в плазме крови близка к нулевой. Но в крови находятся энергонасыщенные эритроциты, которые при контактах с сосудистой стенкой инициируют в мембранах клеток свободнорадикальное окисление, в результате которого продуцируется кислород. Измеренное напряжение кислорода отражает интенсивность свободнорадикального окисления в сосудистой стенке, которое, прежде всего, определяется количеством находящихся в крови энерговозбуждённых эритроцитов и их энергетикой, а также условиями кровотока, влияющими на контакты эритроцитов с сосудистой стенкой. С позиций новых знаний напряжение кислорода в сосудистой стенке отражает энергетическое состояние эритроцитов проходящей крови, хотя эти статусы не адекватны. В дальнейшем изложении мы вынуждены пользоваться принятой в официальной науке терминологией, ни имея в виду всё-таки реальную сущность проходящих процессов.

Чтобы исключить какие-либо неясности в результатах нашего расследования, целесообразно сравнить процессы обеспечения кислородом тканей в обеих версиях с имеющимися в нашем распоряжении новыми данными.

Версия официальная.

В академических изданиях и учебниках для характеристики транспортных возможностей крови в состоянии покоя чаще всего называют две цифры: напряжение кислорода в артериальной крови 95мм рт.ст., в области венозного конца капилляра - 40 мм рт.ст. При этом предполагается, что соответствующие перепады возникают в капиллярах альвеол (с 40 до 95 мм рт.ст.) и капиллярах обслуживаемых тканей (с 95 до 40 мм рт.ст.). Понятно, что при указанной схеме объективно возникает масса вопросов. Да и экспериментальные данные показывают, что в артериальном русле происходит значительное потребление кислорода. Соответственно кровь, поступающая в капилляры тканей, должна иметь напряжение кислорода намного ниже уровня 95 мм рт.ст. В то же время, куда и как уходит кислород из эритроцитов при движении по большому кругу кровообращения, официальная версия умалчивает.

Версия, обоснованная методологией эндогенного дыхания.

Можно согласиться, что при входе в лёгочные капилляры напряжение кислорода в крови минимальное. Оно может быть в среднем 40 мм рт.ст., как в официальной версии. Но, в зависимости от параметров дыхания, оно может отличаться в обе стороны более чем на 10 мм рт.ст.

Эритроциты, получившие в лёгочном капилляре энергетическое возбуждение, за 0,3 секунды способны повысить свой потенциал на 10 - 20 мм рт.ст. Далее они движутся по венулам, венам, лёгочной вене с наращиванием за счёт свободно-радикального окисления энергетического потенциала, который может быть близок к максимуму в среднем где-то в области аорты.

Этот вывод нами делается на основании самой высокой поражаемости в кровеносном русле, прежде всего, интимы (внутренней стенки) аорты. Однако мы прогнозируем для людей с низкой УЖЕЛ и грудным дыханием более ранний выход эритроцитов на уровень активного "горячего" сброса энерговозбуждения. Оно может начинаться уже на последнем участке лёгочной вены, в левом предсердии и желудочке.

Данные зоны, в том числе - митральный клапан, у этих людей могут поражаться гораздо раньше, чем у их сверстников с лучшим дыханием. В то же время при высокой УЖЕЛ и брюшном дыхании эритроциты должны достигать максимума энерговозбуждения далеко за аортой. Однако в этом случае максимум энерговозбуждения эритроцитов значительно ниже, а энерговозбужденные эритроциты распределяются в кровеносном русле намного равномернее, чем у людей со средними данными. Это подтверждается тем, что аорта, артерии, в том числе артерии сердца и головного мозга, у людей с высокой УЖЕЛ и брюшным дыханием поражаются на 20 - 30 лет позднее, чем у других людей.

Так или иначе, в сосудистом русле имеется зона, где напряжение кислорода достигает максимума, что связано со способностью эритроцитов после энерговозбуждения в лёгочном капилляре, постепенно наращивать энергетический потенциал. Наиболее вероятно, что эта зона в организме для большей массы людей представлена аортой и нисходящими артериями. Достаточная протяжённость наиболее энергонасыщенной зоны позволяет предположить, что напряжение кислорода в ней может быть порядка 90 мм рт.ст.

Необходимо отметить, что процесс движения эритроцитов в сосудах малого и большого круга кровообращения также сопровождается периодическим сбросом энергетического возбуждения стенкам сосудов. При сбросе энергетического возбуждения эритроцит переходит на новый уровень свободнорадикального окисления. В результате через небольшой отрезок времени эритроцит становится снова готовым к сбросу энергетического потенциала. Тем не менее, при достижении капилляров потенциал эритроцитов должен значительно снижаться от максимума.

Можно предположить, что напряжение кислорода перед капиллярами большого круга кровообращения может составить 60 - 70 мм рт.ст.

Поскольку время движения крови в тканевых капиллярах также мало, то снижение напряжения кислорода в ней может составить 20 - 25 мм рт.ст. Так как энергетика эритроцитов и далее при движении по сосудам будет снижаться, можно ожидать, что при входе в лёгочный капилляр напряжение кислорода может быть снижено до 25 - 30 мм рт.ст.

Итак, наша версия предполагает, что движение эритроцитов по кровеносному руслу сопровождается повышением их энергетических потенциалов от момента энерговозбуждения в лёгочных капиллярах до достижения ими зоны аорты, крупных артерий, а затем снижением этих потенциалов до момента очередного энерговозбуждения. На этом пути эритроциты испытывают в лёгочных капиллярах небольшое скачкообразное повышение энергетического потенциала (10 - 15 мм рт.ст.); а в тканевых капиллярах - падение энергетического потенциала (20 - 25 мм рт.ст.).

Проведённые определения напряжения кислорода в кровеносном русле (И.Е.Мокроусов, 2001) подтверждают объективность прогноза, построенного на базе методологии эндогенного дыхания).

Представленные в таблице данные не учитывают энергетическую компоненту. Без её определения невозможно оценить уровень обменных процессов в различных органах и тканях.

На основании изложенного следует сделать заключение: современная физиология искаженно трактует базовые процессы жизнеобеспечения организма энергией и кислородом. В результате до настоящего времени не выявлены главные и ключевые причины происхождения атеросклероза, возникновения болезней и старения.

Грубые научные ошибки в физиологии и медицине привели к формированию недееспособного здравоохранения, для которого человек остался до сих пор неизученным объектом. Это достаточно убедительно доказывает теория эндогенного дыхания.

ДАЛЬШЕ: Трудный путь к открытию


Сайт создан в системе uCoz


  
Наш партнер ООО „ЛОТОС” гор. Омск.
Это единственный производитель оригинального сертифицированного дыхательного тренажера Фролова
(Тренажер дыхательный индивидуальный ТДИ-01) выпускаемого в строгом соответствии с авторской документацией.




Наш партнер Интернет банк „RUPAY”.
Система электронных платежей „RUPAY” - самый надежный и удобный способ осуществления расчетов в интернете.
Зарегистрируйся в „RUPAY” и чувствуй себя уверенно!




Подробно о наших партнерах и их деятельности смотри на соответствующих страничках сайта.

Данный проект является абсолютно открытым - любой желающий может разместить свои материалы, касающиеся тематики сайта, абсолютно бесплатно. Вы можете использовать, во вне комерческих целях, любую информацию размещенную на сайте с условием ссылки на наш сайт. Вы можете бесплатно разместить у нас свою рекламу если она связана с тематикой сайта, тематикой здорового образа жизни или оздоровительных методик.

Сайт создан в системе uCoz